Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Umesh N MARATHE
- Brian Post
- Dan Coughlin
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- Blane Fillingim
- David Nuttall
- Georges Chahine
- Lauren Heinrich
- Matt Korey
- Nadim Hmeidat
- Peeyush Nandwana
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Sudarsanam Babu
- Thomas Feldhausen
- Tyler Smith
- Xianhui Zhao
- Yousub Lee
- Adwoa Owusu
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Ben Lamm
- Brittany Rodriguez
- Cait Clarkson
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gs Jung
- Gyoung Gug Jang
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Radu Custelcean
- Ramanan Sankaran
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Tolga Aytug
- Vimal Ramanuj
- Wenjun Ge
21 - 24 of 24 Results

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

This invention demonstrates the strong potential for hybridization of CNF with natural fibers for facile drying and inclusion of the CNF into polymer matrices for high performance composites.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.