Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Philip Bingham
- Ryan Dehoff
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Alexander I Wiechert
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Costas Tsouris
- Debangshu Mukherjee
- Debraj De
- Diana E Hun
- Gautam Malviya Thakur
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- James Gaboardi
- Jesse McGaha
- Kevin Sparks
- Liz McBride
- Mark M Root
- Md Inzamam Ul Haque
- Michael Kirka
- Obaid Rahman
- Olga S Ovchinnikova
- Philip Boudreaux
- Radu Custelcean
- Ramanan Sankaran
- Todd Thomas
- Vimal Ramanuj
- Wenjun Ge
- Xiuling Nie

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.