Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Gyoung Gug Jang
- Jeffrey Einkauf
- Benjamin L Doughty
- Blane Fillingim
- Brian Post
- Bruce Moyer
- Gs Jung
- Lauren Heinrich
- Nikki Thiele
- Peeyush Nandwana
- Santa Jansone-Popova
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Debangshu Mukherjee
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Md Inzamam Ul Haque
- Mina Yoon
- Olga S Ovchinnikova
- Parans Paranthaman
- Ramanan Sankaran
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Uvinduni Premadasa
- Vera Bocharova
- Vimal Ramanuj
- Wenjun Ge
- Yingzhong Ma

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Technetium is a radioactive isotope that is a byproduct of nuclear processing; there are currently limited mechanisms to capture technetium when uranium is recycled, hindering the efficient recycling of spent nuclear fuel.

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.

Direct air capture (DAC) technologies that extract carbon dioxide directly from the atmosphere are critical for mitigating effects of climate change.

Selenate and selenite oxyanions are crystallized together with sulfate anions using ligands. In this approach, we will take advantage of the tendency of these similar oxyanions to co-precipitate into crystalline solid solutions.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.