Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- Alexandre Sorokine
- Clinton Stipek
- Daniel Adams
- Debangshu Mukherjee
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Jessica Moehl
- Josh Michener
- Liangyu Qian
- Mark M Root
- Md Inzamam Ul Haque
- Michael Kirka
- Obaid Rahman
- Olga S Ovchinnikova
- Philip Boudreaux
- Philipe Ambrozio Dias
- Serena Chen
- Taylor Hauser
- Viswadeep Lebakula

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.