Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Michael Kirka
- Benjamin Manard
- Kyle Kelley
- Rama K Vasudevan
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Cyril Thompson
- Peeyush Nandwana
- Sergei V Kalinin
- Alexander I Wiechert
- Alice Perrin
- Amir K Ziabari
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Charles F Weber
- Corson Cramer
- Costas Tsouris
- Fred List III
- James Klett
- Joanna Mcfarlane
- Jonathan Willocks
- Keith Carver
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Matt Vick
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Vandana Rallabandi
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.