Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Benjamin Manard
- Alexey Serov
- Ali Abouimrane
- Costas Tsouris
- Cyril Thompson
- Jaswinder Sharma
- Jonathan Willocks
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Alexander I Wiechert
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bogdan Dryzhakov
- Charles F Weber
- Christopher Rouleau
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- Ilia N Ivanov
- Ivan Vlassiouk
- James Szybist
- Joanna Mcfarlane
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Kyle Kelley
- Logan Kearney
- Lu Yu
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Radu Custelcean
- Ritu Sahore
- Steven Randolph
- Todd Toops
- Vandana Rallabandi
- Yaocai Bai
- Zhijia Du

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.