Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Amit K Naskar
- Joseph Chapman
- Nicholas Peters
- David Olvera Trejo
- Hsuan-Hao Lu
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Joseph Lukens
- Logan Kearney
- Michael Toomey
- Muneer Alshowkan
- Nihal Kanbargi
- Scott Smith
- Akash Jag Prasad
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Brian Gibson
- Brian Post
- Brian Williams
- Calen Kimmell
- Christopher Bowland
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Greg Corson
- Holly Humphrey
- Jesse Heineman
- John Potter
- Josh B Harbin
- Mariam Kiran
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.