Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Brian Post
- Blane Fillingim
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Lauren Heinrich
- Peeyush Nandwana
- Scott Smith
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Akash Jag Prasad
- Alexander I Wiechert
- Brian Gibson
- Calen Kimmell
- Costas Tsouris
- Debangshu Mukherjee
- Emma Betters
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Jesse Heineman
- John Potter
- Josh B Harbin
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Tony L Schmitz
- Vimal Ramanuj
- Vladimir Orlyanchik
- Wenjun Ge

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.