Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Benjamin Manard
- Cyril Thompson
- Alexander I Wiechert
- Bruce Moyer
- Charles F Weber
- Costas Tsouris
- Diana E Hun
- Easwaran Krishnan
- James Manley
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- Joe Rendall
- Jonathan Willocks
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Laetitia H Delmau
- Luke Sadergaski
- Matt Vick
- Mengjia Tang
- Muneeshwaran Murugan
- Tomonori Saito
- Vandana Rallabandi
- Zoriana Demchuk

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.