Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Ilias Belharouak
- Omer Onar
- Adam Siekmann
- Alexey Serov
- Ali Abouimrane
- Erdem Asa
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Subho Mukherjee
- Xiang Lyu
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Callie Goetz
- Christopher Hobbs
- David L Wood III
- Eddie Lopez Honorato
- Fred List III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- Hyeonsup Lim
- Isabelle Snyder
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Richard Howard
- Ritu Sahore
- Rodney D Hunt
- Ryan Heldt
- Shajjad Chowdhury
- Thomas Butcher
- Todd Toops
- Tyler Gerczak
- Yaocai Bai
- Zhijia Du

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.