Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Amit Shyam
- Adam Siekmann
- Alex Plotkowski
- Omer Onar
- Subho Mukherjee
- Erdem Asa
- Isabelle Snyder
- James A Haynes
- Ryan Dehoff
- Soydan Ozcan
- Sumit Bahl
- Xianhui Zhao
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Christopher Fancher
- Dean T Pierce
- Erin Webb
- Evin Carter
- Gerry Knapp
- Gordon Robertson
- Halil Tekinalp
- Hyeonsup Lim
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jovid Rakhmonov
- Kitty K Mccracken
- Mengdawn Cheng
- Nicholas Richter
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sanjita Wasti
- Sarah Graham
- Shajjad Chowdhury
- Sudarsanam Babu
- Sunyong Kwon
- Tyler Smith
- William Peter
- Ying Yang
- Yukinori Yamamoto

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.