Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Vivek Sujan
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Omer Onar
- Adam Siekmann
- Brian Gibson
- Erdem Asa
- Joshua Vaughan
- Luke Meyer
- Mike Zach
- Subho Mukherjee
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gordon Robertson
- Hsin Wang
- Hyeonsup Lim
- Isabelle Snyder
- J.R. R Matheson
- James Klett
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- John Lindahl
- John Potter
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Riley Wallace
- Ritin Mathews
- Sandra Davern
- Shajjad Chowdhury
- Tony Beard
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.