Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Omer Onar
- Adam Siekmann
- Brian Gibson
- Erdem Asa
- Joshua Vaughan
- Kyle Kelley
- Luke Meyer
- Subho Mukherjee
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Gerd Duscher
- Gordon Robertson
- Hyeonsup Lim
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Riley Wallace
- Ritin Mathews
- Sai Mani Prudhvi Valleti
- Shajjad Chowdhury
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.