Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Peeyush Nandwana
- Omer Onar
- Ying Yang
- Adam Siekmann
- Adam Willoughby
- Amit Shyam
- Blane Fillingim
- Brian Post
- Bruce A Pint
- Edgar Lara-Curzio
- Erdem Asa
- Lauren Heinrich
- Rangasayee Kannan
- Rishi Pillai
- Ryan Dehoff
- Shajjad Chowdhury
- Steven J Zinkle
- Subho Mukherjee
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Alex Plotkowski
- Alice Perrin
- Andres Marquez Rossy
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Eric Wolfe
- Frederic Vautard
- Gordon Robertson
- Hyeonsup Lim
- Isabelle Snyder
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Priyanshi Agrawal
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yong Chae Lim
- Zhili Feng

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.