Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Beth L Armstrong
- Michael Kirka
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Omer Onar
- Rangasayee Kannan
- Ryan Dehoff
- Tomonori Saito
- Adam Siekmann
- Adam Stevens
- Christopher Ledford
- Erdem Asa
- Ethan Self
- Jaswinder Sharma
- Peeyush Nandwana
- Robert Sacci
- Sergiy Kalnaus
- Subho Mukherjee
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Brian Post
- Chanho Kim
- Corson Cramer
- Felipe Polo Garzon
- Fred List III
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Isabelle Snyder
- James Klett
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peng Yang
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Vera Bocharova
- Vincent Paquit
- William Peter
- Xiang Lyu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.