Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Adam Siekmann
- Alex Plotkowski
- Amit Shyam
- Omer Onar
- Subho Mukherjee
- David Olvera Trejo
- Erdem Asa
- Isabelle Snyder
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Scott Smith
- Sumit Bahl
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Brian Gibson
- Brian Post
- Calen Kimmell
- Emma Betters
- Gerry Knapp
- Greg Corson
- Hyeonsup Lim
- Jesse Heineman
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Nicholas Richter
- Peeyush Nandwana
- Ryan Dehoff
- Shajjad Chowdhury
- Sunyong Kwon
- Tony L Schmitz
- Vladimir Orlyanchik
- Ying Yang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.