Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Chris Tyler
- Soydan Ozcan
- Justin West
- Meghan Lamm
- Halil Tekinalp
- Ritin Mathews
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Omer Onar
- Steven Guzorek
- Uday Vaidya
- Adam Siekmann
- Alex Roschli
- Beth L Armstrong
- Brian Post
- Dan Coughlin
- David Olvera Trejo
- Erdem Asa
- Georges Chahine
- J.R. R Matheson
- Jaydeep Karandikar
- Jesse Heineman
- Matt Korey
- Pum Kim
- Scott Smith
- Shajjad Chowdhury
- Subho Mukherjee
- Vipin Kumar
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Amber Hubbard
- Ben Lamm
- Brian Gibson
- Cait Clarkson
- Calen Kimmell
- David Nuttall
- Emma Betters
- Erin Webb
- Evin Carter
- Gabriel Veith
- Greg Corson
- Hyeonsup Lim
- Isabelle Snyder
- Jeremy Malmstead
- Jim Tobin
- John Potter
- Josh B Harbin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marm Dixit
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Steve Bullock
- Tolga Aytug
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- Xianhui Zhao

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.