Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Omer Onar
- Adam Siekmann
- Andrzej Nycz
- Chris Masuo
- David Olvera Trejo
- Erdem Asa
- J.R. R Matheson
- Jaydeep Karandikar
- Luke Meyer
- Scott Smith
- Subho Mukherjee
- William Carter
- Akash Jag Prasad
- Alex Walters
- Brian Gibson
- Brian Post
- Calen Kimmell
- Emma Betters
- Greg Corson
- Hyeonsup Lim
- Isabelle Snyder
- Jesse Heineman
- John Potter
- Josh B Harbin
- Joshua Vaughan
- Peter Wang
- Shajjad Chowdhury
- Tony L Schmitz
- Vladimir Orlyanchik

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.