Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Adam Siekmann
- Omer Onar
- Subho Mukherjee
- Yong Chae Lim
- Zhili Feng
- Brian Post
- David Olvera Trejo
- Erdem Asa
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Jian Chen
- Rangasayee Kannan
- Scott Smith
- Wei Zhang
- Adam Stevens
- Akash Jag Prasad
- Brian Gibson
- Bryan Lim
- Calen Kimmell
- Dali Wang
- Emma Betters
- Greg Corson
- Hyeonsup Lim
- Jesse Heineman
- Jiheon Jun
- John Potter
- Josh B Harbin
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Sudarsanam Babu
- Tomas Grejtak
- Tony L Schmitz
- Vladimir Orlyanchik
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.