Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Chris Tyler
- Radu Custelcean
- Justin West
- Costas Tsouris
- Ritin Mathews
- Gyoung Gug Jang
- Jeffrey Einkauf
- Omer Onar
- Adam Siekmann
- Benjamin L Doughty
- Bruce Moyer
- David Olvera Trejo
- Erdem Asa
- Gs Jung
- J.R. R Matheson
- Jaydeep Karandikar
- Nikki Thiele
- Santa Jansone-Popova
- Scott Smith
- Subho Mukherjee
- Akash Jag Prasad
- Alexander I Wiechert
- Brian Gibson
- Brian Post
- Calen Kimmell
- Emma Betters
- Greg Corson
- Hyeonsup Lim
- Ilja Popovs
- Isabelle Snyder
- Jayanthi Kumar
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Jong K Keum
- Josh B Harbin
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Santanu Roy
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Subhamay Pramanik
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Yingzhong Ma

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.