Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Adam Siekmann
- Omer Onar
- Subho Mukherjee
- David Olvera Trejo
- Erdem Asa
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Scott Smith
- Akash Jag Prasad
- Brian Gibson
- Brian Post
- Brian Sanders
- Calen Kimmell
- Emma Betters
- Gerald Tuskan
- Greg Corson
- Hyeonsup Lim
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- Jesse Heineman
- John F Cahill
- John Potter
- Josh B Harbin
- Josh Michener
- Liangyu Qian
- Paul Abraham
- Shajjad Chowdhury
- Tony L Schmitz
- Vilmos Kertesz
- Vladimir Orlyanchik
- Xiaohan Yang
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.