Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Sam Hollifield
- Chad Steed
- Hongbin Sun
- James A Haynes
- Junghoon Chae
- Mingyan Li
- Prashant Jain
- Sumit Bahl
- Travis Humble
- Aaron Werth
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Brian Weber
- Emilio Piesciorovsky
- Gary Hahn
- Gerry Knapp
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Jovid Rakhmonov
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Nate See
- Nicholas Richter
- Nithin Panicker
- Oscar Martinez
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Raymond Borges Hink
- Rob Root
- Ruhul Amin
- Ryan Dehoff
- Samudra Dasgupta
- Srikanth Yoginath
- Sunyong Kwon
- T Oesch
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Yarom Polsky
- Ying Yang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and