Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Sam Hollifield
- Ali Riza Ekti
- Chad Steed
- Junghoon Chae
- Kyle Kelley
- Mingyan Li
- Raymond Borges Hink
- Travis Humble
- Aaron Werth
- Aaron Wilson
- Ali Passian
- Anton Ievlev
- Arpan Biswas
- Brian Weber
- Burak Ozpineci
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Gerd Duscher
- Harper Jordan
- Isaac Sikkema
- Isabelle Snyder
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Liam Collins
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Mark Provo II
- Marti Checa Nualart
- Mary A Adkisson
- Mostak Mohammad
- Nance Ericson
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Rob Root
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Srikanth Yoginath
- Stephen Jesse
- Sumner Harris
- T Oesch
- Utkarsh Pratiush
- Varisara Tansakul
- Yarom Polsky

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.