Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Ilias Belharouak
- Justin West
- Ritin Mathews
- Sam Hollifield
- Ali Abouimrane
- Chad Steed
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Junghoon Chae
- Mingyan Li
- Ruhul Amin
- Scott Smith
- Travis Humble
- Aaron Werth
- Akash Jag Prasad
- Ali Passian
- Brian Gibson
- Brian Post
- Brian Weber
- Calen Kimmell
- David L Wood III
- Emilio Piesciorovsky
- Emma Betters
- Gary Hahn
- Georgios Polyzos
- Greg Corson
- Harper Jordan
- Hongbin Sun
- Isaac Sikkema
- Jason Jarnagin
- Jaswinder Sharma
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Joseph Olatt
- Josh B Harbin
- Junbin Choi
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Lu Yu
- Mahim Mathur
- Mark Provo II
- Marm Dixit
- Mary A Adkisson
- Nance Ericson
- Oscar Martinez
- Pradeep Ramuhalli
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik
- Yaocai Bai
- Yarom Polsky
- Zhijia Du

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.