Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Sam Hollifield
- Chad Steed
- David Olvera Trejo
- Hongbin Sun
- J.R. R Matheson
- Jaydeep Karandikar
- Junghoon Chae
- Mingyan Li
- Prashant Jain
- Scott Smith
- Travis Humble
- Aaron Werth
- Akash Jag Prasad
- Ali Passian
- Brian Gibson
- Brian Post
- Brian Weber
- Calen Kimmell
- Emilio Piesciorovsky
- Emma Betters
- Gary Hahn
- Greg Corson
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jason Jarnagin
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Joseph Olatt
- Josh B Harbin
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Nate See
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Raymond Borges Hink
- Rob Root
- Ruhul Amin
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Tony L Schmitz
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Yarom Polsky

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.