Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Sam Hollifield
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Junghoon Chae
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Travis Humble
- Vincent Paquit
- Viswadeep Lebakula
- Aaron Myers
- Aaron Werth
- Alexandre Sorokine
- Ali Passian
- Annetta Burger
- Brian Weber
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Corey Cooke
- Daniel Adams
- Debraj De
- Emilio Piesciorovsky
- Eve Tsybina
- Gary Hahn
- Gautam Malviya Thakur
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Isaac Sikkema
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- John Holliman II
- Joseph Olatt
- Justin Cazares
- Kevin Spakes
- Kevin Sparks
- Kunal Mondal
- Lilian V Swann
- Liz McBride
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mark Provo II
- Mary A Adkisson
- Matt Larson
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Peter Wang
- Philipe Ambrozio Dias
- Raymond Borges Hink
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Srikanth Yoginath
- Taylor Hauser
- Todd Thomas
- T Oesch
- Varisara Tansakul
- Xiuling Nie
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.