Abstract
Wireless power transfer (WPT) technology has received significant attention recently as an alternative charging method for batteries in a wide range of power levels. In the literature, many types of coil structures have been well-studied. Honeycomb coil arrays, which have been used mostly for low-power applications, have not been well-studied for high-power-level applications. In this paper, a novel honeycomb-DD coil design is proposed for high-power wireless battery charging systems. The proposed coil design with step by step design process is given and Finite Element Analysis (FEA) was performed to observe the full performance characteristics of the system for a 100 kW system. In addition, the misalignment tolerance of the proposed system was observed by shifting the secondary side charging pad at different misalignment positions, and the electromagnetic compatibility to the standards was investigated. The core and strand losses were obtained. The results show that the honeycomb coil array provides high coupling coefficient and better misalignment tolerance, making it a potential coil topology for WPT applications.