Skip to main content
SHARE
Publication

Microstructure and thermal stability of a structurally graded tungsten and reduced activation ferritic/martensitic steel joint

by Ishtiaque Robin, Tim Seibert, Ying Yang, Yutai Kato, Steven J Zinkle
Publication Type
Journal
Journal Name
Journal of Materials Research and Technology
Publication Date
Page Numbers
3663 to 3674
Volume
30

The leading design for plasma-facing high heat flux components in proposed fusion reactors involves joining plasma-facing tungsten tiles to underlying reduced activation ferritic-martensitic (RAFM) steel structures. Due to significant differences in the physical properties between W and steel, an effective method for joining them while preserving the mechanical and microstructural properties under service thermo-mechanical load is yet to be demonstrated. A transitional multilayer consisting of three layers (VCrTi, VCrAl, and FeCrAl) between W and steel is designed with the help of thermodynamic simulation and diffusion kinetics in an attempt to form solid solution bonding without forming brittle intermetallic phases. The solid solution bonding is desirable to mitigate the drastically different thermal expansion between W and steels. The multilayer structure was fabricated using spark plasma sintering (SPS). The microstructure of the bonded transition layers was analyzed after long-term annealing at 620 °C up to 1000h, through scanning electron microscope, energy dispersive spectroscopy and electron backscattering diffraction. Interdiffusion kinetics between layers and reliability of mobility database were also analyzed. This work provides a good understanding of thermal stability as well as the efficacy of multilayer functionally graded transition layer for joining W to ferritic/martensitic steel.