Skip to main content
SHARE
Publication

Machine Learning to Improve Retrieval by Category in Big Volunteered Geodata

by Alexandre Sorokine, Gautam Malviya Thakur, Rachel L Palumbo
Publication Type
Conference Paper
Journal Name
Workshop on Geographic Information Retrieval
Publication Date
Page Number
4
Volume
12
Conference Name
ACM SIGSPATIAL 2018: 12th Workshop on Geographic Information Retrieval
Conference Location
Seattle, Washington, United States of America
Conference Sponsor
ACM
Conference Date
-

Nowadays, Volunteered Geographic Information (VGI) is commonly used in research and practical applications. However, the quality assurance of such a geographic data remains a problem. In this study we use machine learning and natural language processing to improve record retrieval by category (e.g. restaurant, museum, etc.) from Wikimapia Points of Interest data. We use textual information contained in VGI records to evaluate its ability to determine the category label. The performance of the trained classifier is evaluated on the complete dataset and then is compared with its performance on regional subsets. Preliminary analysis shows significant difference in the classifier performance across the regions. Such geographic differences will have a significant effect on data enrichment efforts such as labeling entities with missing categories.