Abstract
Epitaxial SrRu1−xSnxO3 (0 ≤ x ≤ 1) thin films were deposited on SrTiO3 (001) substrates by sequential two-target synthesis using pulsed laser deposition to achieve stable phases in this family of quaternary perovskites. The SrRu1−xSnxO3 films exhibit a good crystalline quality, a sharp interface between film and substrate, and an atomically smooth surface. A gradual expansion of the c-axis lattice parameter was observed with Sn doping serving as a means to tune chemical pressure and magnetism. With an increase in Sn doping, the resistivity of the film increased, and the ferromagnetism decreased. These results illustrate use of lattice engineering, e.g., tuning of c-axis lattice parameter with chemical doping, to control electronic and magnetic properties of epitaxial thin films for applications in oxide electronics.