Abstract
The data presented in this article is supplementary to the research article “Phase instabilities in austenitic steels during particle bombardment at high and low dose rates” (Levine et al.) [5]. Needle-shaped samples were prepared with focused ion beam milling from a 304L stainless steel that was irradiated with fast neutrons (E 0.1 MeV) in the BOR-60 reactor at 318 °C to 47.5 dpa. Atom probe tomography (APT) experiments in voltage mode were then conducted on a Cameca LEAP 5000X HR. Atom position, range, and mass spectrum files after reconstruction with Cameca’s IVAS software are included. Cu- and Ni-Si-Mn-rich solute nanoclusters were identified and analyzed using the Open Source Characterization of APT Reconstructions (OSCAR) program. Python code for OSCAR [4], information on the program’s underlying algorithm, and sample output files are provided. A proximity histogram of a Ni-Si-Mn-rich cluster and a 1D density/solute concentration profile of a Cu-rich cluster are given to demonstrate OSCAR’s analytical functionalities. The provided APT dataset is valuable for benchmarking phase instabilities in neutron-irradiated austenitic stainless steels that occur at high doses. The OSCAR program can be reused to process other APT data sets where solute nanoclustering is of interest.