Abstract
The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.