For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For his innovation in the production and application of medical isotopes; for advancing the separation and purification of actinides and heavy elements; and for his leadership in the use of alpha emitters to save the lives of cancer patients.
For his leadership in separations science and technology; for improving nuclear fuel recycling and waste removal; and for leading the development process that was instrumental in the cleanup of waste at the Savannah River Site.
For his broad scientific contributions and international reputation in aqueous chemistry and geochemistry; for his research into the structure, dynamics, and reactions at fluid–solid interfaces; and for his leadership and service to ORNL and the international scientific community.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
Mazur, who led the Theoretical and Applied Cryobiology Group in the Biology Division, concentrated his research on fundamental mechanisms responsible for injury to cells during freezing and warming. This research and other basic findings were described in his review paper "Freezing of Living Cells: Mechanisms and Implications."