For pioneering advanced microscopy techniques for the microstructural characterization of alloys and the improved of materials for nuclear energy applications.
For leading scientific contributions in fusion energy sciences with a focus on electromagnetic plasma turbulence and on the stability and dynamics of the edge region of magnetic fusion plasmas.
For applying molecular beam techniques to study chemically reactive collisions, helping to lay the foundation for the present field of chemical dynamics, and for pioneering studies in accelerator-based atomic physics, ion-solid interactions, and the channeling of ions, electrons and positrons in crystalline solids.
For fundamental contributions to many areas of theoretical solid-state physics that directly relate to experimental programs, including the electronic structure and magnetism of transition and rare-earth metals, metal-electrolyte interfaces, superconductivity, and physical properties of heavy fermion, mixed valent, and fractal materials
For discoveries of fundamental importance in mammalian genetics, as well as for studies of genetic and developmental effects in mice, which have provided a broad basis for assessment of the genetic risk to humans from radiation and chemicals, including the development of genetic and early developmental tests now used worldwide.
For ideas and techniques which have opened new frontiers in chemical research and now play major roles in the study, understanding, and use of photoionization and photoelectron spectroscopy in studies of "hot atom" chemistry and work with multiply charged molecular ions.
For pioneering work on energy conservation, including development of energy demand models, data bases, and analyses of energy use trends, which has contributed to federal and state energy policies and programs and to demand-side planning by electric utilities.
Mazur, who led the Theoretical and Applied Cryobiology Group in the Biology Division, concentrated his research on fundamental mechanisms responsible for injury to cells during freezing and warming. This research and other basic findings were described in his review paper "Freezing of Living Cells: Mechanisms and Implications."