Skip to main content
Man is flying drone in hurricane aftermath, holding the controller

During Hurricanes Helene and Milton, ORNL deployed drone teams and the Mapster platform to gather and share geospatial data, aiding recovery and damage assessments. ORNL's EAGLE-I platform tracked utility outages, helping prioritize recovery efforts. Drone data will train machine learning models for faster damage detection in future disasters. 

Four thermometers are pictured across the top of the image with an image of a city in the bottom left, with a color block version of that city in the bottom right.

Researchers at Oak Ridge National Laboratory have developed free data sets to estimate how much energy any building in the contiguous U.S. will use in 2100. These data sets provide planners a way to anticipate future energy needs as the climate changes.

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects. 

Sangkeun “Matt” Lee received the Best Poster Award at the Institute of Electrical and Electronics Engineers 24th International Conference on Information Reuse and Integration.

Lee's paper at the August conference in Bellevue, Washington, combined weather and power outage data for three states – Texas, Michigan and Hawaii –  and used a machine learning model to predict how extreme weather such as thunderstorms, floods and tornadoes would affect local power grids and to estimate the risk for outages. The paper relied on data from the National Weather Service and the U.S. Department of Energy’s Environment for Analysis of Geo-Located Energy Information, or EAGLE-I, database.

Sarah Walters portrait

Walters is working with a team of geographers, linguists, economists, data scientists and software engineers to apply cultural knowledge and patterns to open-source data in an effort to document and report patterns of human movement through previously unstudied spaces.

ORNL researchers encoded grid hardware operating data into a color band hidden inside photographs, video or artwork, as shown in this photo. The visual can then be transmitted to a utility’s control center for decoding. Credit: ORNL/U.S. Dept. of Energy

Inspired by one of the mysteries of human perception, an ORNL researcher invented a new way to hide sensitive electric grid information from cyberattack: within a constantly changing color palette.

Thomaz Carvalhaes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In human security research, Thomaz Carvalhaes says, there are typically two perspectives: technocentric and human centric. Rather than pick just one for his work, Carvalhaes uses data from both perspectives to understand how technology impacts the lives of people.

ORNL’s Jason DeGraw, a mechanical engineer and indoor air quality expert, uses numerical equations powered by high-performance computing to analyze and solve problems related to the dispersion patterns of biological pathogens as well as chemical irritants in buildings. Credit: ORNL, U.S. Dept. of Energy

Long before COVID-19’s rapid transmission led to a worldwide pandemic, Oak Ridge National Laboratory’s Jason DeGraw was performing computer modeling to better understand the impact of virus-laden droplets on indoor air quality

As part of a preliminary study, ORNL scientists used critical location data collected from Twitter to map the location of certain power outages across the United States.

Gleaning valuable data from social platforms such as Twitter—particularly to map out critical location information during emergencies— has become more effective and efficient thanks to Oak Ridge National Laboratory.