Skip to main content
Summit Supercomputer

Scientists conducted a groundbreaking study on the genetic data of over half a million U.S. veterans, using tools from the Oak Ridge National Laboratory to analyze 2,068 traits from the Million Veteran Program.

This is a simulated image of the project to build a new network that artificial intelligence and machine learning to steer experiments and analyze data faster and more accurately. will enable

To bridge the gap between experimental facilities and supercomputers, experts from SLAC National Accelerator Laboratory are teaming up with other DOE national laboratories to build a new data streaming pipeline. The pipeline will allow researchers to send their data to the nation’s leading computing centers for analysis in real time even as their experiments are taking place. 

ORNL researchers encoded grid hardware operating data into a color band hidden inside photographs, video or artwork, as shown in this photo. The visual can then be transmitted to a utility’s control center for decoding. Credit: ORNL/U.S. Dept. of Energy

Inspired by one of the mysteries of human perception, an ORNL researcher invented a new way to hide sensitive electric grid information from cyberattack: within a constantly changing color palette.

Computational systems biologists at ORNL worked with the U.S. Department of Veterans Affairs and other institutions to identify 139 locations across the human genome tied to risk factors for varicose veins, marking a first step in the development of new treatments. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

As part of a multi-institutional research project, scientists at ORNL leveraged their computational systems biology expertise and the largest, most diverse set of health data to date to explore the genetic basis of varicose veins.

Watermarks, considered the most efficient mechanisms for tracking how complete streaming data processing is, allow new tasks to be processed immediately after prior tasks are completed. Image Credit: Nathan Armistead, ORNL

A team of collaborators from ORNL, Google Inc., Snowflake Inc. and Ververica GmbH has tested a computing concept that could help speed up real-time processing of data that stream on mobile and other electronic devices.

As part of the Next-Generation Ecosystem Experiments Arctic project, scientists are gathering and incorporating new data about the Alaskan tundra into global models that predict the future of our planet. Credit: ORNL/U.S. Dept. of Energy

Improved data, models and analyses from ORNL scientists and many other researchers in the latest global climate assessment report provide new levels of certainty about what the future holds for the planet 

ORNL’s collaboration with Cincinati Children’s Hospital Medical Center will leverage the lab’s expertise in high-performance computing and safe, secure recordkeeping. Credit: Genevieve Martin/Oak Ridge National Laboratory, U.S. Dept. of Energy

There are more than 17 million veterans in the United States, and approximately half rely on the Department of Veterans Affairs for their healthcare.

The CrossVis application includes a parallel coordinates plot (left), a tiled image view (right) and other interactive data views. Credit: Chad Steed/Oak Ridge National Laboratory, U.S. Dept. of Energy

From materials science and earth system modeling to quantum information science and cybersecurity, experts in many fields run simulations and conduct experiments to collect the abundance of data necessary for scientific progress.

Coronavirus graphic

In the race to identify solutions to the COVID-19 pandemic, researchers at the Department of Energy’s Oak Ridge National Laboratory are joining the fight by applying expertise in computational science, advanced manufacturing, data science and neutron science.

The image visualizes how the team’s multitask convolutional neural network classifies primary cancer sites. Image credit: Hong-Jun Yoon/ORNL

As the second-leading cause of death in the United States, cancer is a public health crisis that afflicts nearly one in two people during their lifetime.