
Modern computer network defense systems rely primarily on signature-based intrusion detection tools, which generate alerts when patterns that are pre-determined to be malicious are encountered in network data streams. Signatures are created reactively, and only after manual analysis of a network intrusion. There is no ability to detect intrusions that are new, or variants of an existing attack. There is no ability to adapt the detectors to the patterns unique to a network environment.
The Oak Ridge Cyber Analytics (ORCA) Attack Variant Detector (AVD) is a sensor that uses machine learning technology to analyze behaviors in channels of communication between individual computers. Using examples of attack and non-attack traffic in the target environment, the ORCA sensor is trained to recognize and discriminate between malicious and normal traffic types. The machine learning provides an insight that would be difficult for a human to explicitly code as a signature because it evaluates many interdependent metrics simultaneously.
The Oak Ridge Cyber Analytics (ORCA) Attack Variant Detector (AVD) is a sensor that uses machine learning technology to analyze behaviors in channels of communication between individual computers. Using examples of attack and non-attack traffic in the target environment, the ORCA sensor is trained to recognize and discriminate between malicious and normal traffic types. The machine learning provides an insight that would be difficult for a human to explicitly code as a signature because it evaluates many interdependent metrics simultaneously.