Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

131 - 140 of 180 Results

Results show change in annual aridity for the years 2071-2100 compared to 1985-2014. Brown shadings (negative numbers) indicate drier conditions. Black dots indicate statistical significance at the 90% confidence level. Credit: Jiafu Mao/ORNL, U.S. Dept. of Energy

A new analysis from Oak Ridge National Laboratory shows that intensified aridity, or drier atmospheric conditions, is caused by human-driven increases in greenhouse gas emissions. The findings point to an opportunity to address and potentially reverse the trend by reducing emissions.

The Energy Exascale Earth System Model project reliably simulates aspects of earth system variability and projects decadal changes that will critically impact the U.S. energy sector in the future. A new version of the model delivers twice the performance of its predecessor. Credit: E3SM, Dept. of Energy

A new version of the Energy Exascale Earth System Model, or E3SM, is two times faster than an earlier version released in 2018.

U.S. Secretary of Energy Granholm tours ORNL’s world-class science facilities

Energy Secretary Jennifer Granholm visited ORNL on Nov. 22 for a two-hour tour, meeting top scientists and engineers as they highlighted projects and world-leading capabilities that address some of the country’s most complex research and technical challenges. 

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

Erdem Asa is leveraging his power electronics expertise to adapt ORNL’s wireless charging technology to unmanned aerial vehicles. Credit: Erdem Asa/ORNL, U.S. Dept. of Energy

Having co-developed the power electronics behind ORNL’s compact, high-level wireless power technology for automobiles, Erdem Asa is looking to the skies to apply the same breakthrough to aviation.

An ORNL research team has incorporated important effects from microbially-active hot spots near streams into models that track the movement of nutrients and contaminants in river networks. The integrated model better tracks water quality indicators and facilitates new science. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

A new modeling capability developed at Oak Ridge National Laboratory incorporates important biogeochemical processes happening in river corridors for a clearer understanding of how water quality will be impacted by climate change, land use and

An open-source code developed by an ORNL-led team could provide new insights into the everyday operation of the nation’s power grid. Credit: Pixabay

Oak Ridge National Laboratory, University of Tennessee and University of Central Florida researchers released a new high-performance computing code designed to more efficiently examine power systems and identify electrical grid disruptions, such as

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

Deeksha Rastogi uses high-performance computing to understand the human impacts of climate change. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

An international problem like climate change needs solutions that cross boundaries, both on maps and among disciplines. Oak Ridge National Laboratory computational scientist Deeksha Rastogi embodies that approach.

Fine roots from a larch tree peek out from a pile of peat excavated from an experimental warming plot in the SPRUCE experiment in Northern Minnesota. Credit: Colleen Iversen/ORNL, U.S. Dept. of Energy

New data hosted by Oak Ridge National Laboratory is helping scientists around the world understand the secret lives of plant roots as well as their impact on the global carbon cycle and climate change.