Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Alex Plotkowski
- Amit Shyam
- James A Haynes
- Sumit Bahl
- Alice Perrin
- Andres Marquez Rossy
- Christopher Hobbs
- Eddie Lopez Honorato
- Gerry Knapp
- Jason Jarnagin
- Jovid Rakhmonov
- Kevin Spakes
- Lilian V Swann
- Mark Provo II
- Matt Kurley III
- Nicholas Richter
- Peeyush Nandwana
- Rob Root
- Rodney D Hunt
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Sunyong Kwon
- Tyler Gerczak
- Ying Yang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.