Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Eddie Lopez Honorato
- Philip Bingham
- Ryan Dehoff
- Ryan Heldt
- Tyler Gerczak
- Vincent Paquit
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Christopher Hobbs
- Debraj De
- Diana E Hun
- Gautam Malviya Thakur
- Gina Accawi
- Gurneesh Jatana
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark M Root
- Mark Provo II
- Matt Kurley III
- Michael Kirka
- Obaid Rahman
- Philip Boudreaux
- Rob Root
- Rodney D Hunt
- Sam Hollifield
- Todd Thomas
- Xiuling Nie

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.