Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Ryan Dehoff
- Venkatakrishnan Singanallur Vaidyanathan
- Yong Chae Lim
- Amir K Ziabari
- Philip Bingham
- Rangasayee Kannan
- Vincent Paquit
- Adam Stevens
- Brian Post
- Bryan Lim
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Jason Jarnagin
- Jiheon Jun
- Kevin Spakes
- Lilian V Swann
- Mark M Root
- Mark Provo II
- Michael Kirka
- Obaid Rahman
- Peeyush Nandwana
- Philip Boudreaux
- Priyanshi Agrawal
- Rob Root
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.