Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Information Technology Services Directorate (3)
Researcher
- Chris Tyler
- Amit Shyam
- Justin West
- Ritin Mathews
- Alex Plotkowski
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Ryan Dehoff
- Scott Smith
- Sumit Bahl
- Adam Stevens
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Annetta Burger
- Brian Gibson
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Christopher Fancher
- Dean T Pierce
- Debraj De
- Emma Betters
- Gautam Malviya Thakur
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- James Gaboardi
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jesse McGaha
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Rob Root
- Roger G Miller
- Sam Hollifield
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Todd Thomas
- Tony L Schmitz
- Vladimir Orlyanchik
- William Peter
- Xiuling Nie
- Ying Yang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.