Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Alexey Serov
- Jaswinder Sharma
- Xiang Lyu
- Amit K Naskar
- Beth L Armstrong
- Diana E Hun
- Easwaran Krishnan
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Manley
- James Szybist
- Jamieson Brechtl
- Jason Jarnagin
- Joe Rendall
- Jonathan Willocks
- Junbin Choi
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin Spakes
- Khryslyn G Araño
- Kuma Sumathipala
- Lilian V Swann
- Logan Kearney
- Mark Provo II
- Marm Dixit
- Meghan Lamm
- Mengjia Tang
- Michael Toomey
- Michelle Lehmann
- Muneeshwaran Murugan
- Nihal Kanbargi
- Ritu Sahore
- Rob Root
- Sam Hollifield
- Todd Toops
- Tomonori Saito
- Zoriana Demchuk

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.