Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Alice Perrin
- Amir K Ziabari
- Diana E Hun
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Bruce A Pint
- Bryan Maldonado Puente
- Christopher Ledford
- Corey Cooke
- Costas Tsouris
- Dave Willis
- David S Parker
- Gerry Knapp
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- James A Haynes
- Jong K Keum
- Luke Chapman
- Mark M Root
- Mina Yoon
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Patxi Fernandez-Zelaia
- Peter Wang
- Radu Custelcean
- Ryan Kerekes
- Sally Ghanem
- Sumit Bahl
- Sunyong Kwon
- Sydney Murray III
- Tim Graening Seibert
- Vasilis Tzoganis
- Vasiliy Morozov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yun Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.