Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Andrzej Nycz
- Chris Masuo
- Christopher Ledford
- Luke Meyer
- Peeyush Nandwana
- William Carter
- Alexander I Wiechert
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Benjamin Manard
- Beth L Armstrong
- Brian Post
- Bruce Hannan
- Charles F Weber
- Corson Cramer
- Costas Tsouris
- Fred List III
- Govindarajan Muralidharan
- Isaac Sikkema
- James Klett
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Joshua Vaughan
- Keith Carver
- Kunal Mondal
- Loren L Funk
- Mahim Mathur
- Matt Vick
- Mingyan Li
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Polad Shikhaliev
- Richard Howard
- Roger G Miller
- Rose Montgomery
- Sam Hollifield
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Theodore Visscher
- Thomas Butcher
- Thomas R Muth
- Trevor Aguirre
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Vladislav N Sedov
- William Peter
- Yacouba Diawara
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.