Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Corson Cramer
- Steve Bullock
- Amit Shyam
- Alex Plotkowski
- Greg Larsen
- James Klett
- Trevor Aguirre
- Andrzej Nycz
- Chris Masuo
- James A Haynes
- Luke Meyer
- Peter Wang
- Ryan Dehoff
- Sumit Bahl
- Vlastimil Kunc
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Beth L Armstrong
- Brian Post
- Bruce Hannan
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Dustin Gilmer
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- John Lindahl
- Jordan Wright
- Joshua Vaughan
- Jovid Rakhmonov
- Loren L Funk
- Michael Kirka
- Nadim Hmeidat
- Nicholas Richter
- Peeyush Nandwana
- Polad Shikhaliev
- Rangasayee Kannan
- Roger G Miller
- Sana Elyas
- Sarah Graham
- Steven Guzorek
- Sudarsanam Babu
- Sunyong Kwon
- Theodore Visscher
- Tomonori Saito
- Tony Beard
- Vladislav N Sedov
- William Peter
- Yacouba Diawara
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.