Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Andrzej Nycz
- Chris Masuo
- Jaswinder Sharma
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- William Carter
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Brian Sanders
- Bruce Hannan
- Christopher Bowland
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Jerry Parks
- Joshua Vaughan
- Loren L Funk
- Paul Abraham
- Peter Wang
- Polad Shikhaliev
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Theodore Visscher
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yang Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.