Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Alex Walters
- Andrew F May
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Brad Johnson
- Bruce A Pint
- Bruce Hannan
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Hsin Wang
- James Klett
- John Lindahl
- Joshua Vaughan
- Loren L Funk
- Meghan Lamm
- Mike Zach
- Nedim Cinbiz
- Peter Wang
- Polad Shikhaliev
- Shajjad Chowdhury
- Steven J Zinkle
- Theodore Visscher
- Tim Graening Seibert
- Tolga Aytug
- Tony Beard
- Vladislav N Sedov
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yacouba Diawara
- Yanli Wang
- Ying Yang
- Yutai Kato

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.