Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- Jaswinder Sharma
- Lauren Heinrich
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alexander I Wiechert
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Bruce Hannan
- Christopher Bowland
- Costas Tsouris
- Debangshu Mukherjee
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Joshua Vaughan
- Loren L Funk
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Peter Wang
- Polad Shikhaliev
- Radu Custelcean
- Ramanan Sankaran
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Theodore Visscher
- Uvinduni Premadasa
- Vera Bocharova
- Vimal Ramanuj
- Vladislav N Sedov
- Wenjun Ge
- Yacouba Diawara

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.