Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Alexey Serov
- Andrzej Nycz
- Chris Masuo
- David Olvera Trejo
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Luke Meyer
- Scott Smith
- William Carter
- Xiang Lyu
- Akash Jag Prasad
- Alex Walters
- Amit K Naskar
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Bruce Hannan
- Calen Kimmell
- Emma Betters
- Gabriel Veith
- Georgios Polyzos
- Greg Corson
- Holly Humphrey
- James Szybist
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Josh B Harbin
- Joshua Vaughan
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Loren L Funk
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Peter Wang
- Polad Shikhaliev
- Ritu Sahore
- Theodore Visscher
- Todd Toops
- Tony L Schmitz
- Vladimir Orlyanchik
- Vladislav N Sedov
- Yacouba Diawara

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.